Given a circle with the equation y^2 + x^2 = 10, with a tangent that intersects at point P, where x=1, find the coordinates for the point at which the tangent meets the x axis (Q).

As the tangent meets the circle at P, when x =1, we can assume that the y value will be the same for this value of x. therefore we substitute x=1 into the equation of the cirlce. Rearranging the equation of the circle gives x = 3. Therefore the line that intersects P parallel to the tangent has the gradient 3. Therefore as it is perpendicular to the tangent, the tangent has the gradient -1/3. this gives the equation of the tangent as y = -(1/3)x + c. We therefore substitute in the two known values of y and x (coordinate P) to find the value of c (the constant). At point Q, y = 0. As we now have the equation y = -(1/3)x + 10/3 we can substitute in the value of y and rearrange for x to find the coordinates for q. This qives q as (10,0).

JP
Answered by Joseph P. Maths tutor

5130 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

factorise x^2+10x+21


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


What is the cosine rule and when can it be used?


How do you rearrange formula?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning