Where does the quadratic formulae come from?

The general form of a quadratic equation is, ax2 +bx + c = 0. If we divide all terms by a we get, x2 +(b/a)x + c/a = 0. then by completing the square we get (x+(b/2a))+ c/a - b2/4a2 = 0 which rearanged is, (x+(b/2a))2 = b2/4a-  c/a. We can combine the 2 terms on the left hand side of this equation into, b2-4ac which gives the overall equation,

(x+(b/2a))2 = (b2-4ac) / 4a2. If we then square root both sides we have x+b/2a = sqrt(b2-4ac)/2a. By rearanging again we get x= (sqrt(b2-4ac)-b) / 2a. Which looks like the quadratic formulae, there is a subtlety which is that a square root can be either + or -, i.e. the sqrt(4) is 2 or -2 therefore for our quadratic formulae we have to consider both the postivie and negative terms.

Therefore our overall result reduces to the formulae you are familiar with x= (-b ± sqrt(b2-4ac)) / 2a

BO
Answered by Benjamin O. Maths tutor

3724 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The region below the curve y = e^x + e^(-x) and the lines x = 0, x = ln4 is rotated 2π radians about the x-axis. Find the volume of the resulting solid.


Express cos(2x) in terms of acos^2(x) + b


Prove that the indefinite integral of I = int(exp(x).cos(x))dx is (1/2)exp(x).sin(x) + (1/2)exp(x).cos(x) + C


What is the "chain rule"?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences