Prove the identity (4cos(2x))/(1+cos(2x)) = 4-2sec^2(x)

Write down the formulas involving cos2x and select the one which involves only cosine, this is because cosine (or derivations of it) is the only trigonometric function in this question. Substitute the chosen identity which is cos(2x) = 2cos^2(x)-1 into the left handside (LHS) of the equation which should give you: (8cos^2(x) - 4)/(2cos^2(x))   This can be cancelled down to 4-2/cos^2(x) Manipulate the right handside (RHS) of the equation by using the identity: sec(x) = 1/cos(x). This should give the RHS to be 4-2/cos^2(x) which = LHS. Make it obvious to the examiner that the sides of the are equal by equating them at the end so you don't lose marks!

TN
Answered by Tegan N. Maths tutor

13610 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use integration by parts to find the value of the indefinite integral (1/x^3)lnx ; integration with respect to dx


In a triangle ABC, side AB=10 cm, side AC=5cm and the angle BAC=θ, measured in degrees. The area of triangle ABC is 15cm(sq). Find 2 possible values for cosθ and the exact length of BC, given that it is the longest side of the triangle.


y = 2x^3 + 15x^2 + 24x + 10 Find the stationary points on this curve and determine their nature


Differentiate x^3 − 3x^2 − 9x. Hence find the x-coordinates of the stationary points on the curve y = x^3 − 3x^2 − 9x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning