Given that y = ((4x+3)^5)(sin2x), find dy/dx

First of all, we have to use the product rule, since two things are multiplied together.  The product rule states that d/dx (u*v) = vu' + uv'

Let u = (4x+3)5  v = sin(2x)

Now, to find  u' and v' we have to find du/dx and dv/dx. As we see, we need to use the chain rule to find du/dx

u' = 20(4x+3)4   v' = 2cos(2x)

Finally, dy/dx = vu' + uv' = 20sin(2x)(4x+3)4 + 2cos(2x)(4x+3)5

JN
Answered by Juozas N. Maths tutor

3228 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that arctan(x)+e^x+x^3=0 has a unique solution.


Find, in radians, the general solution of the equation cos(3x) = 0.5giving your answer in terms of pi


What is a good method to go about sketching a polynomial?


Showing all your working, evaluate ∫(21x^6 - e^2x- (1/x) +6)dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning