Given that y = ((4x+3)^5)(sin2x), find dy/dx

First of all, we have to use the product rule, since two things are multiplied together.  The product rule states that d/dx (u*v) = vu' + uv'

Let u = (4x+3)5  v = sin(2x)

Now, to find  u' and v' we have to find du/dx and dv/dx. As we see, we need to use the chain rule to find du/dx

u' = 20(4x+3)4   v' = 2cos(2x)

Finally, dy/dx = vu' + uv' = 20sin(2x)(4x+3)4 + 2cos(2x)(4x+3)5

JN
Answered by Juozas N. Maths tutor

3053 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area under the curve with equation y = 5x - 2x^2 - 2, bounded by the x-axis and the points at which the curve reach the x-axis.


How would you expand (x+5y)^5?


Differentiate the equation y = (1+x^2)^3 with respect to (w.r.t.) x using the chain rule. (Find dy/dx)


Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences