Given that y = ((4x+3)^5)(sin2x), find dy/dx

First of all, we have to use the product rule, since two things are multiplied together.  The product rule states that d/dx (u*v) = vu' + uv'

Let u = (4x+3)5  v = sin(2x)

Now, to find  u' and v' we have to find du/dx and dv/dx. As we see, we need to use the chain rule to find du/dx

u' = 20(4x+3)4   v' = 2cos(2x)

Finally, dy/dx = vu' + uv' = 20sin(2x)(4x+3)4 + 2cos(2x)(4x+3)5

JN
Answered by Juozas N. Maths tutor

3370 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how do you differentiate tan(x)


Show, by counter-example, that the statement "If cos(a) = cos(b) then sin(a) = sin(b)" is false.


Given that y = (sin(6x))(sec(2x) ), find dy/dx


A car is moving on an inclined road with friction acting upon it. When it is moving up the road at a speed v the engine is working at power 3P and when it is moving down the road at v the engine is working at a power P. Find the value of P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning