Could you please go through an example question where you have to solve quadratic simultaneous equations?

Of course - let's solve this question:

Question: Solve the following quadratic simultaneous equations

(1) 2x + y = 4 - x

(2) y2 + 4x = 12

Answer:

a) Let us start by re-arranging the first equation:

          2x + y = 4 - x  -> Initial equation

          y = 4 - 3x -> bring the '2x' on the left hand-side to the right hand-side - let's call this equation (3)

b) Substitute (3) into (1):

          (4 - 3x)2 + 4x = 12

c) Expand the brackets:

          16 - 24x + 9x2 + 4x = 12

d) Re-arrange to get all 'x's onto one side:

          9x2 - 20x + 4 = 0

e) Factorise the equation and solve:

          (9x - 2)(x - 2) = 0

          x = 2/9 or 2

f) Substitute the two values of 'x' into equation (3):

          When x = 2/9 -> y = 4 - 3(2/9) = 4 - 6/9 = 10/3

          When x = 2 -> y = 4 - 3(2) = 4 - 6 = -2

g) Therefore the solutions are: (2/9 , 10/3) and (2 , -2)

AS
Answered by Akhil S. Maths tutor

3165 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

3 postitive whole numbers have a mean of 6. What is the greatest possible range of the numbers?


Alex designs a game for people to play, using two fair five-sided spinners. A person wins the game when both spinners land on the same letter. People pay 40p for each game they play. The prize for a win in £1. Is she likely to raise money?


A shop trying to sell a laptop reduces its price by 7% at the very end of each week, from an initial price of £600. If you have £365 to spend, how many weeks must you wait until you can buy the laptop?


There are 9 counters in a bag. 7 of the counters are green. 2 of the counters are blue. Two counters are chosen at random, what is the probability one counter of each colour is chosen.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning