Find the gradient of the curve y = x^2(ln(x)) at x = e

We'll need to use the product rule.

Let's take u = x^2 -> du/dx = 2x, and v = ln(x) -> dv/dx = 1/x

Then dy/dx = x^2(1/x) + 2xln(x) = x + 2xln(x)

Substituting our x value gives (dy/dx)|(x = e) = e + 2eln(e) = 3e

CR
Answered by Charlie R. Maths tutor

6710 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I break down (x-2)/((x+1)(x-1)^2) into partial fractions?


The shortest side of a triangle is 4.3m long. Two of the angles are 45.1 and 51.2 degrees respectively. Find the length of the longest side.


Show that the integral ∫(1-2 sin^2⁡x)/(1+2sinxcosx) dx = (1/2) ln2 between the limits π/4 and 0. [5 marks]


Show that 2(1-cos(x)) = 3sin^2(x) can be written as 3cos^2(x)-2cos(x)-1=0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning