4x-y=3 and 3x-2y=1. Solve these simultaneous equations to find values for x and y.

Equation 1: 4x-y=3  Equation 2: 3x-2y=1

We have to find a common multiple between 4 and 3 so that both equations have the same first value. This means that we can get rid of the x by subtracting the second equation from the first. This will leave us with a simple linear equation with which we can solve to find y and then go on to find x. The lowest common denominator between 4 and 3 is 12. 

3(4x-y)=3x3 -> 12x-3y=9 (Eq. 1)
4(3x-2y)=4x1 -> 12x-8y=4 (Eq. 2)

Eq. 1 - Eq.2 = 12x-12x-3y--8y=9-4 ->  5y=5

hence y=1 and now we have to input the y value into the first (or second) equation to find x

4x-1=3 -> 4x=4 -> x=1

So x=1 and y=1

JH
Answered by Jami H. Maths tutor

11231 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The line l is a tangent to the circle x^2 + y^2 = 40 at the point A. A is the point (2, 6). The line l crosses the x-axis at the point P. Work out the area of triangle OAP.


Find the points at which the equation y = x^2 - 12x + 35 intersects the x-axis.


Adam is going to get a loan of £ 720 to help pay for the holiday. Adam will have to pay back the £ 720 plus interest of 15 %. He will pay this back in 12 equal monthly installments. How much money will Adam pay back each month?


How do I solve a simultaneous equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning