A curve is defined for x>0 as y = 9 - 6x^2 - 12x^4 . a) Find dy/dx. b) Hence find the coordinates of any stationary points on the curve and classify them.

a) y = 9 -6x^2 - 12x^4 

dy/dx = -12x - 48x^3 

b) At stationary points dy/dx = 0. 

-12x - 48x^3 = 0 

48x^3 + 12x = 0 

4x^3 + x = 0

x (4x^2 + 1) = 0 

Either x = 0 or 4x^2 + 1 = 0 However, 4x^2 + 1 = 0 leads to 4x^2 = -1 which gives x^2 = -1/4. There are no solutions to this equation because x^2 is greater than or equal to 0 for all values of x. 

Therefore, the only solution is given where x = 0. When x =0, y = 9, which gives the coordinates of the stationary point as (0,9). 

In order to classify the point, we must look at the second derivative which equals: -12 - 144x^2. 

When x = 0 the second derivative = -12. As the second derivative is less than 0, the point (0,9) must be a maximum point. Therefore, the only stationary point on the curve is the maximum point (0,9). 

OW
Answered by Olivia W. Maths tutor

3112 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At time t = 0, a particle is projected vertically upwards with speed u m s–1 from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed 17.5 m s–1. Find the value of u and T and evaluate the model. (AS mechanics)


Integrate (1 - x^2)^(-0.5)dx within the limits 0 and 1


differentiate y=(5x-2)^5


Integrate xcos(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences