Given that log_{x} (7y+1) - log_{x} (2y) =1 x>4, 0<y<1 , express y in terms of x.

log_{x} (7y+1) - log{x} (2y) =1 --> log_{x} [(7y+1)/2y]=1 (y =/= 0, Rules of logarithms i.e. difference of logarithms) --> x = [(7y+1)/2y] (x>0, Rules of logarithms i.e. log_{x} x = 1) --> 2yx = 7y+1 (Multiply by 2y) --> 2yx-7y= 1 (Moving y's to one side) --> y(2x-7) = 1 (Factorising out the y) --> y = 1/(2x-7) 

CL
Answered by Christopher L. Maths tutor

6369 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate sin7xcos3x


y = (x^3)/3 - 4x^2 + 12x find the stationary points of the curve and determine their nature.


What is the differential of (14x^3-3x^2)^3


what is the equation of the normal line to the curve y=x^2-4x+3 at the point (5,8)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning