Given that log_{x} (7y+1) - log_{x} (2y) =1 x>4, 0<y<1 , express y in terms of x.

log_{x} (7y+1) - log{x} (2y) =1 --> log_{x} [(7y+1)/2y]=1 (y =/= 0, Rules of logarithms i.e. difference of logarithms) --> x = [(7y+1)/2y] (x>0, Rules of logarithms i.e. log_{x} x = 1) --> 2yx = 7y+1 (Multiply by 2y) --> 2yx-7y= 1 (Moving y's to one side) --> y(2x-7) = 1 (Factorising out the y) --> y = 1/(2x-7) 

CL
Answered by Christopher L. Maths tutor

6376 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = (3x^4 + x)^5, find dy/dx using the chain rule.


Using the product rule, differentiate y=(2x)(e^3x)


A circle C with centre at the point (2, –1) passes through the point A at (4, –5). Find an equation for the circle C.


There are two lines in the x-y plane. The points A(-2,5) and B(3,2) lie on line one (L1), C(-1,-2) and D(4,1) lie on line two (L2). Find whether the two lines intersect and the coordinates of the intersection if they do.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning