Find the turning points and their nature of the graph y = x^3/3 - 7x^2/2 + 12x + 4

Answer = (3,17.5) maximum (4,17.33) minimum

First differentiate y = x^3/3 - 7x^2/2 + 12x + 4 to find dy/dx. Now, at turning points dy/dx = 0 and factorise to find x when dy/dx = 0. Put x back into orginal equation to find y at turning point. 

Now to find the nature of the turning point take your equation for dy/dx and differentiate again to find d^2y/dx^2. Put x of both points into this equation. If equation comes out positive the turning point is a minimum. If it comes out negative turning point is maximum. Now plot these points on a graph and see how they add up

JS
Answered by John S. Maths tutor

8656 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area R under the curve when f(x)=xcos(x) between the limits x=0 and x=2


Example of product rule - if y=e^(3x-x^3), what are the coordinates of stationary points and what are their nature?


Differentiate the equation y = (2x+5)^2 using the chain rule to determine the x coordinate of a stationary point on the curve.


A curve is defined by the parametric equations x=t^2/2 +1, y=4/t -1. Find the gradient of the curve when t =2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning