Find the turning points and their nature of the graph y = x^3/3 - 7x^2/2 + 12x + 4

Answer = (3,17.5) maximum (4,17.33) minimum

First differentiate y = x^3/3 - 7x^2/2 + 12x + 4 to find dy/dx. Now, at turning points dy/dx = 0 and factorise to find x when dy/dx = 0. Put x back into orginal equation to find y at turning point. 

Now to find the nature of the turning point take your equation for dy/dx and differentiate again to find d^2y/dx^2. Put x of both points into this equation. If equation comes out positive the turning point is a minimum. If it comes out negative turning point is maximum. Now plot these points on a graph and see how they add up

JS
Answered by John S. Maths tutor

8716 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The air pressure in the cabin of a passenger plane is modelled by the equation: P(x) = 3cos(x/2) - sin(x/2) where x is the altitude. Express P(x) in the form Rcos(x/2 +z) where z is acute and in degrees and then find the maximum pressure


How do I find the limit of a sequence that is expressed as a fraction?


How would we evaluate (1/3)^-3/2 ?


Differentiate 3x^(2)+xy+y^(2)=12 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning