The equation x^3 - 3*x + 1 = 0 has three real roots; Show that one of the roots lies between −2 and −1

In order to prove that one real root of an equation is situated in a certain interval, we calculate the value of the function at the ends of the given interval. In the given case, f(-2) = (-2)^3 - 3*(-2) + 1 = -1 and f(-1) = (-1)^3 - 3*(-1) + 1 = 3. As our function is an elementary one (a polynomial), it is continuous over all real values, which means that the function will take all real values from -1 to 3 as x goes from -2 to -1, including 0. This means that one of the roots of f lies in the interval (-2, -1).

PT
Answered by Paul T. Maths tutor

11763 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate x/(x^2 + 3) ?


Using the factor theorem, factorise x^4 - 3x^3 - 3x^2 + 11x - 6


John wants to separate a rectangular part of his garden for his puppy. He has material for a 100-meter long fence and he plans to use one side of his house as a barrier. How should John select the sizes of his fence in order to gain the biggest territory?


How to differentiate with respect to x, xsin2x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning