The equation x^3 - 3*x + 1 = 0 has three real roots; Show that one of the roots lies between −2 and −1

In order to prove that one real root of an equation is situated in a certain interval, we calculate the value of the function at the ends of the given interval. In the given case, f(-2) = (-2)^3 - 3*(-2) + 1 = -1 and f(-1) = (-1)^3 - 3*(-1) + 1 = 3. As our function is an elementary one (a polynomial), it is continuous over all real values, which means that the function will take all real values from -1 to 3 as x goes from -2 to -1, including 0. This means that one of the roots of f lies in the interval (-2, -1).

PT
Answered by Paul T. Maths tutor

11523 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the maximum value of 2sin(x)-1.5cos(x)


A curve has equation (x+y)^2=x*y^2, find the gradient of the curve at a point where x=1


Differentiate 2x^3+23x^2+3x+5 and find the values of x for which the function f(x) is at either at a maximum or minimum point. (Don't need to specify which is which)


Find the tangent to the curve y=x^2 +2x at point (1,3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning