The equation x^3 - 3*x + 1 = 0 has three real roots; Show that one of the roots lies between −2 and −1

In order to prove that one real root of an equation is situated in a certain interval, we calculate the value of the function at the ends of the given interval. In the given case, f(-2) = (-2)^3 - 3*(-2) + 1 = -1 and f(-1) = (-1)^3 - 3*(-1) + 1 = 3. As our function is an elementary one (a polynomial), it is continuous over all real values, which means that the function will take all real values from -1 to 3 as x goes from -2 to -1, including 0. This means that one of the roots of f lies in the interval (-2, -1).

PT
Answered by Paul T. Maths tutor

10557 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I simply differentiate and what does a differential mean?


Solve x^2 - 6x - 2=0 giving your answer in simplified surd form.


If y = 5x^3 - 2x^2 + 2, what is dy/dx?


Find tan(A-B) sec^2(A) - 2tan(A) = 16 && sin(B)sec^2(B) = 64cos(B)cosec^2(B)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences