Given f(x) = 3 - 5x + x^3, how can I show that f(x) = 0 has a root (x=a) in the interval 1<a<2?

In plain english, we need to show that there is a value of x, which we call "a", in the interval 1 < a < 2 where f(a)=0. To prove this we start by letting x = 1: f(1) = 3 - 5(1) + 13 = -1. We now let x = 2: f(2) = 3 - 5(2) + 23 = 1. Since there is a change of sign of the value of f(x) in the interval of 1 < x < 2, then there must be a value of x = a where f(a) is zero. Therefore, the function f(x) = 0 has  a root (x = a) in the interval 1 < a < 2.

GP
Answered by Giorgos P. Maths tutor

7328 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate y= x^3+3x^2-4x-7 between x values 1 and 3


Find 1 + (1 + (1 + (1 + (1 + ...)^-1)^-1)^-1)^-1


Given that Y=(x+3)(x+5); find dy/dx


Susan is researching the population growth of a city. She proposes that x, the number of people in the city, t years after 2017 is given by x=250,000e^(0.012t) A.population in 2017 B.population in 2020 C.During which year would the population have doubled


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning