Find two values of k, such that the line y = kx + 2 is tangent to the curve y = x^2 + 4x + 3

There will be intersection when x^2 + 4x + 3 = kx + 2. Our goal is to find the values of k which would only give one solution to this quadratic equation, which would make the lines 'tangent' to each other. First we rearrange the equation to get it in a familiar form: x^2 + (4-k)x + 1 = 0 To have one solution, the discriminant (b^2 - 4ac) must be zero. (4-k)^2 - 411 = 0 16 - 8k + k^2 - 4 = 0 k^2 - 8k +12 = 0 Factorising: (k-6)(k-2) = 0 So k = 6 and k = 2 are valid solutions to this problem.

AN
Answered by Andrew N. Maths tutor

34159 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve sec(x)^2-2*tan(x)=4 for 0<=x<=360


solve the equation 2cos x=3tan x, for 0°<x<360°


Integrate: xe^x


Integrate 1/x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences