Integrate xcos(x)

This problem will be solved using the integration by parts method, taking the integrated function as udv which answer is uv-(integration of vdu) : u=x and dv=cos(x) so, du=dx and v=sin(x). We have, xsin(x)-integration(sinxdx), and knowning that the integrate of sinx is: -cos(x)+c (constant), the final answer is: xsin(x)+cos(x)+c.

LA
Answered by Lucia A. Maths tutor

3492 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you show that (x+2) is a factor of f(x) = x^3 - 19x - 30, and then factorise f(x) completely?


Showing all your working, evaluate ∫(21x^6 - e^2x- (1/x) +6)dx


A curve is defined by the parametric equations x = 3^(-t) + 1, y = 2 x 2^(t). Show that dy\dx = -2 x 3^(2t).


The shortest side of a triangle is 4.3m long. Two of the angles are 45.1 and 51.2 degrees respectively. Find the length of the longest side.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning