Integrate xcos(x)

This problem will be solved using the integration by parts method, taking the integrated function as udv which answer is uv-(integration of vdu) : u=x and dv=cos(x) so, du=dx and v=sin(x). We have, xsin(x)-integration(sinxdx), and knowning that the integrate of sinx is: -cos(x)+c (constant), the final answer is: xsin(x)+cos(x)+c.

LA
Answered by Lucia A. Maths tutor

3311 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate xcos(x) with respect to x.


Find the coordinates of the point of intersection of the lines 2x + 5y = 5 and x − 2y = 4.


Write down three linear factors of f(x) such that the curve of f(x) crosses the x axis at x=0.5,3,4. Hence find the equation of the curve in the form y = 2(x^3) + a(x^2) + bx + c.


At each point P of a curve for which x > 0 the tangent cuts the y-axis at T, and N is the foot of the perpendicular from P to the y-axis. If T is always 1 unit below N and the curve passes through the point (1,0), find the Cartesian equation of the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences