Find the normal to the curve y = x^2 at x = 5.

Differentiate the original equation (y = x^2) to find the gradient (m) of the line which is a tangent to the curve.

Dy/dx = 2x 

Therefore m = 2

Calculate the negative reciprocal (m2) which will give the gradient of the normal.

m2 = -0.5

Using the equation y=mx+c find the equation of the normal.

When x=5, y=25.

25=(-0.5)(5) + c

c=27.5

y=-0.5x+27.5

AS
Answered by Aphisha S. Maths tutor

3434 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A girl saves money over 200 weeks. She saves 5p in Week 1, 7p in Week 2, 9p in Week 3, and so on until Week 200. Her weekly savings form an arithmetic sequence. Find the amount she saves in Week 200. Calculate total savings over the 200 week period.


Express 6cos(2x)+sin(x) in terms of sin(x). Hence solve the equation 6cos(2x) + sin(x) = 0, for 0° <= x <= 360°.


Given that y =2x^3 + 3/(x^2), find a) dy/dx and b) the integral of y


Given that y= 1/ (6x-3)^0.5 find the value of dy/dx at (2;1/3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences