Explain how the electron pair repulsion theory can be used to deduce the shape of, and the bond angle in, PF3

Phosphorous has five electrons in its outermost shell of electrons. Fluorine provides three electrons to the phosphorous allowing the formation of a stable central phosphorous atom which now has 8 electrons and 3 fluorine atoms which now also share 8 electrons in its outershell. However as there are only 3 bonding pairs there must be a lone pair of electrons in this molecule. As bond pairs repel each other you would expect a tetrahedral shape to the molecule with a bond angle of 109 however due to the presence of the lone pair, there is more repulsion which distorts the shape slightly and it becomes trigonal pyramidal with a bond angle of 107.

PB
Answered by Prashan B. Chemistry tutor

11432 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Explain why Xenon had a lower first ionisation enthalpy than Neon. (3 marks)


Alcohols can be converted into alkenes in an elimination reaction. The elimination of H2O from pentan-2-ol forms a mixture of organic products. Give the names and structures of all the organic products in the mixture.


The following equilibrium is set up in a glass syringe. 2(NO2) (brown gas) ‹-› N2O4 (colourless gas) ∆H = -58 kJmol-1. Using le Chatelier's principle, predict and explain how heating up the mixture would affect it's appearance.


Explain the principle behind chemically reactive and inert molecules


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning