How do I find the expression for the nth term in a series of numbers?

First write down the series of numbers e.g.  8,  12,  16,  20.

Calculate the difference between each term in the series 12-8 = 4, 16-12 = 4,  20-16 = 4 This shows that the expression will begin with 4n as the difference is 4.  Next write out the series of number that would be in the expression '4n'. This would be: 4(1) = 4, 4(2) = 8, 4(3) = 12, 4(4) = 16. Now right the 4n sequence above the original sequence so it will be: 4  8  12  16 // 8 12 16 20 .  Caculate how to get from the first sequence to the second. This would be +4 as to get from 4 to 8 and 8 to 12 you need to add 4. Therefore the expression is 4n+4.  Always test this out afterwards e.g. 4(1)+4 = 8, 4(2)+4=12, 4(3)+4 = 16, 4(4)+4 = 20.  The sequence 8, 12, 16, 20 is the same as we started with so 4n+4 is the expression for the nth term.

MB
Answered by Megan B. Maths tutor

17855 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write 36 as a product of prime factors. Give your answer in index form.


Plot out y= x^2 - x - 2 for values of x from -3 to +3 and label the turning point


I struggle with time management whilst doing an exam paper. How will I be able to answer every question in the time given for the exam?


How do you find the HCF of 110 and 132


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences