Show that, for all a, b and c, a^log_b (c) = c^log_b (a).

We want to prove:

    alogb(c) = clogb(a).

Recall that we can always write x = eln(x), so xy = (eln(x))y = ey ln(x).

Recall also the change of basis formula for logs:

logb (x) = y  <=>  by = x  <=>  y ln(b) = ln(x)  <=>  y = logb(x) = ln(x) / ln(b).

Putting these two remarks together, we have:

    alogb(c) = elogb(c) ln(a) = e[ln(c) / ln(b)] ln(a) = e[ln(a) / ln(b)] ln(c) = elogb(c) ln(a) = clogb (a).

Q.E.D.

TD
Answered by Tutor69809 D. Maths tutor

6670 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)


solve for x, in the form x = loga/logb for 2^(4x - 1) = 3^(5-2x) (taken from OCR June 2014 C2)


How do you integrate the term x^2?


A ball is projected vertically upwards from the ground with speed 21 ms^–1. The ball moves freely under gravity once projected. What is the greatest height reached by the ball?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning