Show that, for all a, b and c, a^log_b (c) = c^log_b (a).

We want to prove:

    alogb(c) = clogb(a).

Recall that we can always write x = eln(x), so xy = (eln(x))y = ey ln(x).

Recall also the change of basis formula for logs:

logb (x) = y  <=>  by = x  <=>  y ln(b) = ln(x)  <=>  y = logb(x) = ln(x) / ln(b).

Putting these two remarks together, we have:

    alogb(c) = elogb(c) ln(a) = e[ln(c) / ln(b)] ln(a) = e[ln(a) / ln(b)] ln(c) = elogb(c) ln(a) = clogb (a).

Q.E.D.

TD
Answered by Tutor69809 D. Maths tutor

6538 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the stationary points on the curve y = f(x) = x^3+6x^2-36x?


Solve (3x+6)/4 - (2x-6)/5 = (x+7)/8.


Why do you not add the 'plus c' when finding the area under a graph using integration even though you add it when normally integrating?


If y = 2/3 x^3 + x^2; a) What is dy/dx? b) Where are the turning points? c) What are the nature of the turning points?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning