How do I rationalised and simplify surds?

Say I have a fraction with 2 surds, such as √10 / √6. To rationalise this, we need to get the dominator (bottom fraction) to be an integer. As √10 / √6 x 1 still gives √10 / √6, and we can write 1 as √6 / √6, we can do (√10 / √6) x (√6 / √6) = √(10 x 6) / 6 = √60 / 6.

This is now rationalised, as the demonator is no longer a surd, however it is not in its simplest form yet. To get this we can simplify √60 to give √(4 x 15) = √4 x √15 = 2√15. In the fraction this gives 2√15 / 6 which cancels down to √15 / 3.

TG
Answered by Tabitha G. Maths tutor

4532 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

factorise: 12y^2 -20y+3


Benjamin has a 0.7 chance of passing his driving test the first time and a 0.85 chance of passing the second time. What is the probability of his passing on either the first or second try?


Find the area under the graph between x=0 and x=2 when f(x)=x^2 +2, give your answer as an exact value.


If a student wishes to have a ratio of 2:7 red pens to yellow pens in their pencil case: a) if they have 50 pens total what is the maximum amount they can carry with them b) if they have 18 red and 31 yellow what is the maximum amount they can carry


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning