How do I rationalised and simplify surds?

Say I have a fraction with 2 surds, such as √10 / √6. To rationalise this, we need to get the dominator (bottom fraction) to be an integer. As √10 / √6 x 1 still gives √10 / √6, and we can write 1 as √6 / √6, we can do (√10 / √6) x (√6 / √6) = √(10 x 6) / 6 = √60 / 6.

This is now rationalised, as the demonator is no longer a surd, however it is not in its simplest form yet. To get this we can simplify √60 to give √(4 x 15) = √4 x √15 = 2√15. In the fraction this gives 2√15 / 6 which cancels down to √15 / 3.

TG
Answered by Tabitha G. Maths tutor

4177 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that (x+2)(x+3)(x+5) can be written in the form ax^3 + bx^2 + cx +d, where a,b, c and d are positive integers


Bill buys 8 identical cricket balls. The total cost is £169.04 Work out the total cost of 19 of these cricket balls. (Calculator allowed).


For the equation, 5(7x + 8) + 3(2x + b) ≡ ax + 13. Find the values of a and b. You may use a calculator.


The area of a parallelogram is given by the equation 2(x)^2+7x-3=0, where x is the length of the base. Find: (a) The equation of the parallelogram in the form a(x+m)^2+n=0. (b) The value of x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences