Express (16x^2 + 4x^3)/(x^3 + 2x^2 - 8x) + 12x/(x-2) as one fraction in its simplest form.

Answer: 16x/(x - 2)

Start with the numerator of the first fraction, 16x2 + 4x3 , take a factor of 4x2 out to get 4x2(4 + x). Then look at the denominator of the fraction, x3 + 2x2 - 8x, immediately you can take out a factor of x to get, x(x2 + 2x - 8) which you can then factorise to get x(x - 2)(x + 4). From this you can see that x(x + 4) can be removed from the numerator and denominator to leave 4x/(x - 2). Then since the two fractions now have the same denominator you can just add the numerators together, 4x + 12x = 16x, giving the answer 16x/(x - 2).

MS
Answered by Manon S. Maths tutor

3251 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 2log (base 3)(x) - log (base 3)(x+4) = 2


Solve the equation 3sin^2(x) + sin(x) + 8 = 9cos^2(x), -180<X<180. Then find smallest positive solution of 3sin^2(2O-30) + sin(2O-30) + 8 = 9cos^2(2O-30).


How do I deal with parametric equations? x = 4 cos ( t + pi/6), y = 2 sin t, Show that x + y = 2sqrt(3) cos t.


Differentiate y=x^x with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences