Why does the product rule for differentiating functions work?

Let k(x) = f(x)g(x) then k'(x) = limit as h --> 0 of: (h(x+h)-h(x))/h = lim (f(x+h)g(x+h) - f(x)g(x))/h

We can factorise the numerator as:
f(x+h)g(x+h) - f(x)g(x) =f(x+h)g(x+h) -g(x)f(x+h) + g(x)f(x+h)- f(x)g(x) = f(x+h)[g(x+h) - g(x)] + g(x)[f(x+h)-f(x)]
Hence: 
lim (f(x+h)g(x+h) - f(x)g(x))/h = lim (f(x+h)[g(x+h) - g(x)] + g(x)[f(x+h)-f(x)]/h = lim (f(x+h)[g(x+h) - g(x)])/h + lim (g(x)[f(x+h)-f(x)])/h. We know that lim (f(x+h) - f(x) ) / h is just f'(x) by definition. And the same for g'(x). Hence we can replace these so:
k'(x) = lim h approaches 0 of f(x+h)g'(x) + g(x)f'(x). As h approaches 0, f(x+h) just approaches f(x) therefore we have k'(x) = f(x)g'(x) +g(x)h'(x)

This is all more easily explained on a board where we can keep clarity, but drop the brackets 

BV
Answered by Blaine V. Maths tutor

3361 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the derivative of y=(e^(2x))(sin(3x))


When calculating a question with a double integral question between two different ranges which range relates to which integration variable.


The tangent to a point P (p, pi/2) on the curve x=(4y-sin2y)^2 hits the y axis at point A, find the coordinates of this point.


What is the coefficient of the x^3 term in the binomial expansion of (2x+(1/3x^2))^9


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning