Why does the product rule for differentiating functions work?

Let k(x) = f(x)g(x) then k'(x) = limit as h --> 0 of: (h(x+h)-h(x))/h = lim (f(x+h)g(x+h) - f(x)g(x))/h

We can factorise the numerator as:
f(x+h)g(x+h) - f(x)g(x) =f(x+h)g(x+h) -g(x)f(x+h) + g(x)f(x+h)- f(x)g(x) = f(x+h)[g(x+h) - g(x)] + g(x)[f(x+h)-f(x)]
Hence: 
lim (f(x+h)g(x+h) - f(x)g(x))/h = lim (f(x+h)[g(x+h) - g(x)] + g(x)[f(x+h)-f(x)]/h = lim (f(x+h)[g(x+h) - g(x)])/h + lim (g(x)[f(x+h)-f(x)])/h. We know that lim (f(x+h) - f(x) ) / h is just f'(x) by definition. And the same for g'(x). Hence we can replace these so:
k'(x) = lim h approaches 0 of f(x+h)g'(x) + g(x)f'(x). As h approaches 0, f(x+h) just approaches f(x) therefore we have k'(x) = f(x)g'(x) +g(x)h'(x)

This is all more easily explained on a board where we can keep clarity, but drop the brackets 

BV
Answered by Blaine V. Maths tutor

3044 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the differential of (cos2x)^2


[FP2] Solve: 3 cosh x - 4 sinh x = 7


Do y=3x^2+5x+12 and y=3x-8 intercept with each other? If yes, at which point(s)?


Expand the expression (1+3x)^1/3 up to the term x^3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences