Show that (sqrt(3) + sqrt(75))^{2} = 108

The key here is to simplify the left hand side. There are two different approaches to take here, one slightly faster but both perfectly legitimate. First approach: Remember the formula (a + b)^{2} = a^{2} + 2ab + b^{2}. Then (sqrt(3) + sqrt(75))^{2} = 3 + 2sqrt(3)sqrt(75) + 75 = 78 + 2sqrt(225) = 78 + 2*15 = 108. Second approach: This approach is effectively the same as the first but in slightly more steps (which should be easier in general). We can write the left hand side out in full as (sqrt(3) + sqrt(75)) (sqrt(3) + sqrt(75)). From here, recall how we multiply these kinds of brackets together: (a + b)(c + d) = ac + ad + bc + bd. So we have sqrt(3)*sqrt(3) + sqrt(3)*sqrt(75) + sqrt(75)*sqrt(3) + sqrt(75)sqrt(75) = 3 + sqrt(225) + sqrt(225) + 75 = 78 + 215 = 108.

CB
Answered by Callum B. Maths tutor

5659 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove Pythagoras' Theorem


Solve the following simultaneous equations 3x+y=11 and 2x+y=8


Alice will play 2 games of tennis against Bob. Alice’s chances of winning each game is 0.7. Work out the probability of Alice winning exactly one match.


Complete the square of the following expression: 2x^2 -8x+21


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences