Find values of y such that: log2(11y–3)–log2(3) –2log2(y) = 1

NB.: Treat all log as log2 for purpose of formatting log(x) - log(z) = log(x/z) alog(b) = log(b^a) log((11y - 3)/3) - log(y^2) = 1 log((11y - 3)/3y^2) = 1 11y - 3 / 3y^2 = 2^1 11y - 3 = 6y^2 6y^2 - 11y + 3 = 0 (3y - 1) (2y - 3) = 0 y = 1/3 or 1.5

SA
Answered by Shrinivas A. Maths tutor

4869 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the function xsin(4x^2) with respect to x, using the integration by substitution method.


If f(x)=x^2 and g(x)=5x-11, then what is fgg(x) when x=3?


Find the equation for the tangent to the curve y^3 + x^3 + 3x^2 + 2y + 8 = 0 at the point (2,1)


Given that y = (3x^4 + x)^5, find dy/dx using the chain rule.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences