Derive the quadratic equation.

So in order to derive the quadratic equation we need to start with a quadratic that can represent any quadratic equation. Lets start with ax2+bx+c=0.

We will use the completing the square method to solve this. First lets make sure the x2 term is all by itself with no coefficient by dividing through a so x2+(b/a)x+(c/a)=0.

Now lets complete the square: (x+(b/2a))2-(b/2a)2+(c/a)=0.

This looks pretty messy so lets rearrange so the x terms are on one side and expand the (b/2a)2 term: 

(x+(b/2a))2=(b2/4a2)-(c/a).

Now we can make the right hand side one big fraction by multiplying c by 4a so that the denominators are the same:

(x+(b/2a))2=(b2-4ac)/4a2

We can see the b2-4ac term already which is good. Now lets square root both sides so we can single out x. After that it is a simple matter of rearranging again (I can't write a square root or plus/minus sign here so I have skipped some steps).

HT
Answered by Harry T. Maths tutor

3620 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate ((5x^3) + ((2x)^-1) + (e^2x))dx.


Differentiate 3x^2+1/x and find the x coordinate of the stationary point of the curve of y=3x^2+1/x


How do you find the turning points of a graph and how do you if the point is a maximum or a minimum?


A curve has equation y = e^(3x-x^3) . Find the exact values of the coordinates of the stationary points of the curve and determine the nature of these stationary points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning