How would I solve the following equation d^2x/dt^2 + 5dx/dt + 6x = 0

Our given equation is d2x/dt2 + 5dx/dt + 6x = 0, which we need to recognise as a second order differential equation. Therefore we need to begin by solving the auxilary funtion m2+5m +6= 0. ( Side note: Most of the mathematical equations we solve are expressed in x and y, but in this equation it's expressed in terms of x and t, where x is the dependent variable). Solving the auxiliary funtion gives us values of -3&-2 for m. Because these are real values that are not equal to each other we can use the complimentary funtion y= Aect + Bedt where y is the dependent variable, t is our independent variable and A&B are constants of intergration. If we plug in our values the auxiliary funtion becaomes x = Ae-3t+Be-2t. Which is our final answer.

DM
Answered by Dimuthu M. Further Mathematics tutor

6145 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Find dy/dx when y=2x^(4)+3x^(-1)


Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.


Simplify fully the expression ( 7x^2 + 14x ) / ( 2x + 4 )


A straight line passes trough the points A(-4;7); B(6;-5); C(8;t). Use an algebraic method to work out the value of t.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning