Find the gradient of the tangent to the curve with the equation y = (3x^4 - 18)/x at the point where x = 3

y = (3x- 18)/x

The gradient of a tangent to a curve is equal to dy/dx 

However, we must simplify this equation before we can differentiate it;

y = 3x3 - 18/x = 3x3 - 18x-1

dy/dx = 3(3x2) - (-1)(18x-2)

= 9x2 + 18x-2 = 9x2 + 18/x2

When x = 3,

dy/dx = 9(9) + 18/9 = 83

RO
Answered by Rachel O. Maths tutor

4451 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By forming and solving a quadratic equation, solve the equation 5*cosec(x) + cosec^2(x) = 2 - cot^2(x) in the interval 0<x<2*pi, giving the values of x in radians to three significant figures.


Simplify √32 + √18 giving your answer in the form of a√2.


Parlami di cosa hai fatto durante le vacanze di Natale.


A circle, C, has an equation: x^2 + y^2 - 4x + 10y = 7 . Find the centre of the circle and its radius?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning