Find the gradient of the tangent to the curve with the equation y = (3x^4 - 18)/x at the point where x = 3

y = (3x- 18)/x

The gradient of a tangent to a curve is equal to dy/dx 

However, we must simplify this equation before we can differentiate it;

y = 3x3 - 18/x = 3x3 - 18x-1

dy/dx = 3(3x2) - (-1)(18x-2)

= 9x2 + 18x-2 = 9x2 + 18/x2

When x = 3,

dy/dx = 9(9) + 18/9 = 83

RO
Answered by Rachel O. Maths tutor

4587 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y=((4x+1)^3)sin2x. Find dy/dx.


Why is the differential of a constant zero?


Solve the following definite integral: f(x)=3e^(2x+1) for the limits a=0 and b=1, leaving your answer in exact form.


How to prove that (from i=0 to n)Σi^2= (n/6)(n+1)(2n+1), by induction.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning