The points A and B have coordinates (3, 4) and (7, 6) respectively. The straight line l passes through A and is perpendicular to AB. Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

For the line passing through A and B: m = (y2-y1)/(x2-x1) = (-6-4)/(7-3) = -5/2

For the perpendicular line: m = -1/(-5/2) = 2/5 

y - y1 = m*(x - x1)  >>  y - 4 = (2/5)*(x - 3)  >>  5y - 20 = 2x - 6  >>  2x - 5y + 14 = 0

DA
Answered by Deji A. Maths tutor

11982 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of x and y for which dy/dx = 0 in y= x^3 - 4x^2 - 3x +2


How do you find the acute angle between two intersecting lines whos equations are given in vector form?


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


Prove that sin(x)+sin(y)=2sin((x+y)/2)cos((x-y)/2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning