Solve the ODE y' = -x/y.

we have dy/dx = -x/y , so we treat the differentials as fractions and write y dy = -x dx. Now integrating the left side with respect to y and the right side with respect to x, we have y2/2 = -x2/2 + C. Which is our final solution.

JM
Answered by Jean-christophe M. Maths tutor

3047 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By first expanding the brackets, differentiate the equation: y=(4x^4 + 3x)(2x^2 - 9)


The equation of a circle is x^2+y^2-6x-4y+4=0. i) Find the radius and centre of the circle. ii) Find the coordinates of the points of intersection with the line y=x+2


Why do we need the constant of integration?


Find the acute angle between the two lines... l1: r = (4, 28, 4) + λ(-1, -5, 1), l2: r = (5, 3, 1) + μ(3, 0, -4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences