Solve the ODE y' = -x/y.

we have dy/dx = -x/y , so we treat the differentials as fractions and write y dy = -x dx. Now integrating the left side with respect to y and the right side with respect to x, we have y2/2 = -x2/2 + C. Which is our final solution.

JM
Answered by Jean-christophe M. Maths tutor

3423 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Curves C1 and C2 have equations y= ln(4x-7)+18 and y= a(x^2 +b)^1/2 respectively, where a and b are positive constants. The point P lies on both curves and has x-coordinate 2. It is given that the gradient of C1 at P is equal to the gradient of C2 at P.


Solve x^2 - 6x - 2=0 giving your answer in simplified surd form.


Find the integral of y= e^3x / 1+e^x using calculus.


Given that y = 16x + x^-1, find the two values of x for which dy/dx = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning