Fully simplify the expression: 4 / (sqrt(8) + 4)

Notice that the square root of 8 can be simplified: 4 / (sqrt(4) * sqrt(2) + 4) = 4 / (2 * sqrt(2) + 4) Divide top and bottom of the fraction by two: 2 / (sqrt(2) + 2) Rationalise the denominator: (2 / (sqrt(2) + 2)) * ((sqrt(2) - 2) / (sqrt(2) - 2)) = (2*sqrt(2) - 4) / ((sqrt(2) + 2) * (sqrt(2) - 2)) Expand brackets on denominator: (2 * sqrt(2) - 4) / (2 - 4) = (2 * sqrt(2) - 4) / -2 = (-sqrt(2) + 2) = 2 - sqrt(2)

OM
Answered by Oliver M. Maths tutor

6761 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

f(x) = 3x - 2a || g(x) = 2ax + 1 || fg(x) = 2x + b/2


The point P has coordinates (4, 5). The point Q has coordinates (a, b). A line perpendicular to PQ is given by the equation 5x+3y=11. Find an expression for b in terms of a.


Find the minimum value of the quadratic 3x^2-8x+1.


Simplify 125^(-2/3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning