Fully simplify the expression: 4 / (sqrt(8) + 4)

Notice that the square root of 8 can be simplified: 4 / (sqrt(4) * sqrt(2) + 4) = 4 / (2 * sqrt(2) + 4) Divide top and bottom of the fraction by two: 2 / (sqrt(2) + 2) Rationalise the denominator: (2 / (sqrt(2) + 2)) * ((sqrt(2) - 2) / (sqrt(2) - 2)) = (2*sqrt(2) - 4) / ((sqrt(2) + 2) * (sqrt(2) - 2)) Expand brackets on denominator: (2 * sqrt(2) - 4) / (2 - 4) = (2 * sqrt(2) - 4) / -2 = (-sqrt(2) + 2) = 2 - sqrt(2)

OM
Answered by Oliver M. Maths tutor

6765 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A ball, dropped vertically, falls d metres in t seconds. d is directly proportional to the square of t. The ball drops 45 metres in the first 3 seconds. How far does the ball drop in the next 7 seconds?


You are given that f(x) = cx + d and that f(0) = -6 and f(2) = 10. Find the values of c and d.


Solve simultaneously, x+y=2 and 4y^2-x^2=11


Work out the value of 125 to the power of -2/3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning