The curve has the equation y= (x^3)/(2x-1). Find dy/dx.

To differentiate a function with respect to (wrt) x you multiply the function by the power and then lower the power by one. For example, if f(x)=x^3, then to differentiate you multiply the function by 3 (the power) and then lower the power by 1 (3-1=2). Therefore the derivative of x^3 is 3x^2. In the question it is exactly the same however we add a few other bits in. Due to the function is a fraction can use the quotient rule (which is given in your formula books), it states when y=u/x, then dy/dx=(vdu/dx -udv/dx)/v^2. In the question, we label x^3 =u and 2x-1=v.

So from before we can say that du/dx=3x^2, and dv/dx=2. Now we can plug this into the equation. so dy/dx=({2x-1}{3x^2} - 2{x^3})/(2x-1)^2. Now we can try to simplify the equation, leaving us with (4x^3 - 3x^2)/(2x-1)^2.

PC
Answered by Poppy C. Maths tutor

5433 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can you explain the product rule when differentiating?


How do I sketch a graph of a polynomial function?


The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.


Differentiate: y = 4x^3 - 5/x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning