How do I use the chain rule to differentiate polynomial powers of e?

  • Google+ icon
  • LinkedIn icon
  • 759 views

e(x^2+2)=f(x)=y

Is the equation we will use to demonstrate correct use of the chain rule.

The equation at the core of the chain rule is:

dy/dx=dt/dx*dy/dt

Seeing that dt as a numerator and dt as a denominator are both present in the equation allows us to cancel dt from the equation.

When using the chain rule, firstly, we must express f(x) using a simpler power of e, to do this we set t equal to x2+2, giving us the following equalities.

t=x2+2

y=et

From our differentiation rules we know that:

y=et

dy/dt=et

And:

t=x2+2

dt/dx=2x

Finally, we substitute into dy/dx=dt/dx*dy/dt 

(dy/dt)*(dt/dx)=dy/dx

(e(x^2+2))*(2x)=dy/dx

y=e(x^2+2)

dy/dx=2xe(x^2+2)

Joshua O. A Level Chemistry tutor, A Level Maths tutor, GCSE Maths tutor

About the author

is an online A Level Maths tutor who has applied to tutor with MyTutor studying at Queen's, Belfast University

Still stuck? Get one-to-one help from a personally interviewed subject specialist.

95% of our customers rate us

Browse tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok