How do I use the chain rule to differentiate polynomial powers of e?

e(x^2+2)=f(x)=y

Is the equation we will use to demonstrate correct use of the chain rule.

The equation at the core of the chain rule is:

dy/dx=dt/dx*dy/dt

Seeing that dt as a numerator and dt as a denominator are both present in the equation allows us to cancel dt from the equation.

When using the chain rule, firstly, we must express f(x) using a simpler power of e, to do this we set t equal to x2+2, giving us the following equalities.

t=x2+2

y=et

From our differentiation rules we know that:

y=et

dy/dt=et

And:

t=x2+2

dt/dx=2x

Finally, we substitute into dy/dx=dt/dx*dy/dt 

(dy/dt)*(dt/dx)=dy/dx

(e(x^2+2))*(2x)=dy/dx

y=e(x^2+2)

dy/dx=2xe(x^2+2)

JO
Answered by Joshua O. Maths tutor

5082 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

"Solve cos(3x +20) = 0.6 for 0 < x < 360" - why are there more than one solution, and how do I find all of them?


Find the tangent of the following curve, y=xe^x, at x=1 expressing it in the form y=mx+c?


solve sin(2x)=0.5. between 0<x<2pi


How do you differentiate 2 to the power x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences