The curve C has parametric equations x=2cos(t) and y=3cos(2t). Find and expression for dy/dx in terms of t.

Differentiate both equations given with respect to t.
dx/dt = -2sin(t)
dy/dt = -6sin(2t)

dy/dx = (dy/dt) / (dx/dt)
Sub your values in to get

dy/dx = (3sin(2t))/sin(t)

SK
Answered by Sameerah K. Maths tutor

12836 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball is thrown from ground level at an angle of 30 degrees from the horizontal with a velocity of 20 m/s. It just clears a wall with a height of 5m, from this calculate the distances that the wall could be from the starting position.


Find the gradients of y = 3x^2 − (2/3) x + 1 at x = 0


f(x) = (4x + 1)/(x - 2). Find f'(x)


By consdering partial fractions find the integral of (1-x)/(5x-6-x^2) between x = 1 and x = 0, give your answer in an exact form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning