The curve C has parametric equations x=2cos(t) and y=3cos(2t). Find and expression for dy/dx in terms of t.

Differentiate both equations given with respect to t.
dx/dt = -2sin(t)
dy/dt = -6sin(2t)

dy/dx = (dy/dt) / (dx/dt)
Sub your values in to get

dy/dx = (3sin(2t))/sin(t)

SK
Answered by Sameerah K. Maths tutor

12780 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that dx/dt = (1+2x)*4e^(-2t) and x = 1/2 when t = 0, show that ln[2/(1+2x)] = 8[1 - e^(-2t)]


What is differentation and how does it work?


Given that y=π/6 at x=0 solve the differential equation,dy/dx=(e^x)cosec2ycosecy


Express X/((X+1)(X+2)) in partial fractions. OCR C4 style question


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning