How do you differentiate using the chain rule?

In order to differentiate using the chain rule,you first need to know the chain rule. Chain rule : dy/dt * dt/dx = dy/dx.

It is basic multiplication to get rid of the common factor of 'dt' in both equations to give dy/dx.

You would begain by differentiating the general y = something t and x = something t. This will give you the dy/dt and dx/dt. You would then find th recepricol of dx/dt to give dt/dx. Then multiply with the dy/dt you found before. This is known as the chain rule. 

NG
Answered by Niha G. Maths tutor

3648 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the coordinate of the maximum value of the function f(x) = 9 – (x – 2)^2


Solve: 2 sin(2x) = (1-sin(x))cos(x) for 0<x<2*Pi and give any values of x, if any, where the equation is not valid


Differentiate sin(2x)/x^2 w.r.t. x


Express as a single logarithm 2 loga 6 loga 3 [2 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning