How do you differentiate using the chain rule?

In order to differentiate using the chain rule,you first need to know the chain rule. Chain rule : dy/dt * dt/dx = dy/dx.

It is basic multiplication to get rid of the common factor of 'dt' in both equations to give dy/dx.

You would begain by differentiating the general y = something t and x = something t. This will give you the dy/dt and dx/dt. You would then find th recepricol of dx/dt to give dt/dx. Then multiply with the dy/dt you found before. This is known as the chain rule. 

NG
Answered by Niha G. Maths tutor

3064 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

x = t^3 + t, y = t^2 +1, find dy/dx


Find the gradient of the curve y = x^2(ln(x)) at x = e


The height x metres, of a column of water in a fountain display satisfies the differential equation dx/dt = 8sin(2t)/(3sqrt(x)), where t is the time in seconds after the display begins. (a) Solve the differential equation, given that x(0)=0


What is the difference between definite and indefinite integrals?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences