I can differentiate exponentials (e^x), but how can I differentiate ln(x)?

[Differentiate y = ln(x)] This is an example of many situations in maths where you need to solve something that is similar to what you can solve, but not in its current form. A good idea, then, is to see what you can do to get into a form where you can use what you already know. Consider: y = ln(x) e^y = x This is something that you can differentiate: dx/dy = e^y Then, get this back into the form that you want: dx/dy = x dy/dx = 1/x

AL
Answered by Adam L. Maths tutor

3328 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why do you not add the 'plus c' when finding the area under a graph using integration even though you add it when normally integrating?


What is greater e^pi or pi^e?


Given that log_{x} (7y+1) - log_{x} (2y) =1 x>4, 0<y<1 , express y in terms of x.


How do I know when to integrate using by parts or by substitution?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning