I can differentiate exponentials (e^x), but how can I differentiate ln(x)?

[Differentiate y = ln(x)] This is an example of many situations in maths where you need to solve something that is similar to what you can solve, but not in its current form. A good idea, then, is to see what you can do to get into a form where you can use what you already know. Consider: y = ln(x) e^y = x This is something that you can differentiate: dx/dy = e^y Then, get this back into the form that you want: dx/dy = x dy/dx = 1/x

AL
Answered by Adam L. Maths tutor

3330 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x)=ln(3x+1), x>0 and g(x)=d/dx(f(x)), x>0, find expressions for f^-1 and g


How do you find the integral of sin^2(x) dx?


f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


Express (4x)/(x^2-9) - (2)/(x+3) as a single fraction in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning