How do I use the product rule for derivatives?

Imagine a function f(x)=g(x)*h(x)    [that is, two functions multiplied together]

To find the derivative, f'(x)=g'(x)*h(x) + g(x)*h'(x)    

For example, f(x) = (3x2)*(cos x )        [g(x)=3x2  , h(x)=cosx]

f'(x) = (6x)(cos x ) + (3x2)(-sin x )

        =6xcos(x) - 3x2sin(x)

JW
Answered by James W. Maths tutor

3974 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If f(x)=x^2 and g(x)=5x-11, then what is fgg(x) when x=3?


use the substitution u=2+ln(x) to show that int(e,1(ln(x)/x(2+ln(x)^2))dx)=p+ln(q) , where p and q are rational numbers.


Given that x=3 is a solution to f(x)= 2x^3 - 8x^2 + 7x - 3 = 0, solve f(x)=0 completely.


State the trigonometric identities for sin2x, cos2x and tan2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning