Differentiate 3x^(2)+xy+y^(2)=12 with respect to x

this is implicit differentiation. We start by differentiating 3x^(2) to get 6x (lower the power by 1, multiply by the original power). For xy, we use the product rule, giving us y + (x)dy/dx (this is the implicit part). y^(2) is differentiated to 2y*dy/dx, and 12 on the RHS just becomes 0. We want to get dy/dx on its own so we first collect like terms on one side, factorise, and then divide. dy/dx(x+2y)=-6x-y, hence dy/dx=-(6x+y)/(x+2y)

NL
Answered by Noyonika L. Maths tutor

4353 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many people in a room is required such that the probability of any two people sharing a birthday is over 50 percent?


Find the exact value of the integral of (2+7/x), between x=1 and x=e. Give your answer in terms of e.


Differentiate cos(2x)/(x) with respect to x


Given that y = 5x^4 + 3x^3 + 2x + 5, find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning