Differentiate 3x^(2)+xy+y^(2)=12 with respect to x

this is implicit differentiation. We start by differentiating 3x^(2) to get 6x (lower the power by 1, multiply by the original power). For xy, we use the product rule, giving us y + (x)dy/dx (this is the implicit part). y^(2) is differentiated to 2y*dy/dx, and 12 on the RHS just becomes 0. We want to get dy/dx on its own so we first collect like terms on one side, factorise, and then divide. dy/dx(x+2y)=-6x-y, hence dy/dx=-(6x+y)/(x+2y)

NL
Answered by Noyonika L. Maths tutor

4360 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary pointsof the following: (y = x^3 - x^2 -16 x -17) and determine if each point is a maximum or minimum.


Differentiate the equation y = x^2 + 3x + 1 with respect to x.


solve the simultaneous equation; x^2+y^2=10 2x+y=5


Find the equation of the tangent to the curve y=3x^2-7x+5 at the point (2, 3) .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning