3. The point P lies on the curve with equation y=ln(x/3) The x-coordinate of P is 3. Find an equation of the normal to the curve at the point P in the form y = ax + b, where a and b are constants.

P- (3,0) y=ln(x/3)     u=x/3    y=ln(u) ​​​​​​            du = 1/3  dy = 1/u = 3            dx       du dy= du x dy dx dx  du   = 1/3 x 3 = 1 gradient at normal = -1 equation at normal = y = m(x) + c                  0 = -3 + c                  3 = c Answer: equation at normal = y = -x + 3

KB
Answered by Kaushalya B. Maths tutor

13108 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation y=((x^2+4)(x-3))/2*x where x is not equal to 0 . Find the tangent to the curve C at the point where x=-1 in the form y=mx+c


Differentiate the following equation: f(x) = 5x^3 + 6x^2 - 12x + 4


Find the first derivative of 2x^3+5x^2+4x+1 (with respect to x)


The circle C has centre (2,1) and radius 10. The point A(10,7) lies on the circle. Find the equation of the tangent to C at A and give it in the form 0 =ay + bx + c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning