3. The point P lies on the curve with equation y=ln(x/3) The x-coordinate of P is 3. Find an equation of the normal to the curve at the point P in the form y = ax + b, where a and b are constants.

P- (3,0) y=ln(x/3)     u=x/3    y=ln(u) ​​​​​​            du = 1/3  dy = 1/u = 3            dx       du dy= du x dy dx dx  du   = 1/3 x 3 = 1 gradient at normal = -1 equation at normal = y = m(x) + c                  0 = -3 + c                  3 = c Answer: equation at normal = y = -x + 3

KB
Answered by Kaushalya B. Maths tutor

12885 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of a curve whose parametric equations are x=t^2/2+1 and y=t/4-1 when t=2


Solve x^3+2*x^2-5*x-6=0


How do I differentiate an algebraic expression? (e.g. y=3x^4 - 8x^3 - 3) [the ^ represents x being raised to a power]


What is a stationary point on a curve? How do I calculate the co-ordinates of a stationary point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning