Answers>Maths>IB>Article

The quadratic equation x^2 - 2kx + (k - 1) = 0 has roots α and β such that α^2 + β^2 = 4. Without solving the equation, find the possible values of the real number k.

We know in a quadratic x^2 +bx + c = 0, -b/a = α + β and c/a = αβ. 

Therefore, α + β = -(-2k) = 2k, and αβ = k - 1. (Both are divided by the coefficient in front of x which is 1 so can be ignored.

Now (α + β)^2 = α^2 + 2αβ + β^2

Rearranging: α^2 + β^2 = (α + β)^2 - 2αβ

Substituting: 4 = (2k)^2 - 2(k - 1)

Expand: 4 = 4k^2 - 2k + 2 = 2 (2k^2 - k + 1)

Put all on one side: 0 = 2k^2 - k - 1 = (2k + 1)(k - 1)

Hence k = 1  or -1/2

RT
Answered by Ralph T. Maths tutor

16640 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

The quadratic function f(x) = p + qx – x^2 has a maximum value of 5 when x = 3. Find the value of p and the value of q.


Solve the equation 8^(x-1) = 6^(3x) . Express your answer in terms of ln 2 and ln3 .


Finding complex numbers using DeMoivre's Theorem


In the arthmetic sequence, the first term is 3 and the fourth term is 12. Find the common difference (d) and the sum of the first 10 terms.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning