Answers>Maths>IB>Article

The quadratic equation x^2 - 2kx + (k - 1) = 0 has roots α and β such that α^2 + β^2 = 4. Without solving the equation, find the possible values of the real number k.

We know in a quadratic x^2 +bx + c = 0, -b/a = α + β and c/a = αβ. 

Therefore, α + β = -(-2k) = 2k, and αβ = k - 1. (Both are divided by the coefficient in front of x which is 1 so can be ignored.

Now (α + β)^2 = α^2 + 2αβ + β^2

Rearranging: α^2 + β^2 = (α + β)^2 - 2αβ

Substituting: 4 = (2k)^2 - 2(k - 1)

Expand: 4 = 4k^2 - 2k + 2 = 2 (2k^2 - k + 1)

Put all on one side: 0 = 2k^2 - k - 1 = (2k + 1)(k - 1)

Hence k = 1  or -1/2

RT
Answered by Ralph T. Maths tutor

16564 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

dy/dx = 10exp(2x) - 4; when x = 0, y = 6. Find the value of y when x = 2.


Given the function f(x)=λx^3 + 9, for λ other than zero, find the inflection point of the graph in terms of λ. How does the slope of the line tangent to the inflection point changes as λ varies from 0 to 1?


Solve the equation sec^2 x+ 2tan x = 0, 0 ≤ x ≤ 2π. IB May 2017 Exam


Let g (x) = 2x sin x . (a) Find g′(x) . (b) Find the gradient of the graph of g at x = π .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning