The random variable J has a Poisson distribution with mean 4. Find P(J>2)

P(J>2) = P(J=0)+P(J=1)     [split it up]

P(X=t)= (V^t)/t!*e^V       where V=4 in this case  [use the formula]

P(J>2) = 4^0/0!*e^4 + 4^1/1!*e^4

          =1/e^4 + 4/e^4  =  5e^-4  which is roughly  0.0916

NC
Answered by Nathan C. Maths tutor

4294 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate 5x^2 + x + 2 and find the value of c if the curve lies on the coordinates (1,3)


How do I differentiate a trigonometric function for something that is not just a single variable (e.g. d/dx (sin(3x))?


Differentiate the following with respect to x: e^(10x) + ln(6x+2)


Find the stationary points on the curve: y = x^3 + 3x^2 +2x+5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning