The random variable J has a Poisson distribution with mean 4. Find P(J>2)

P(J>2) = P(J=0)+P(J=1)     [split it up]

P(X=t)= (V^t)/t!*e^V       where V=4 in this case  [use the formula]

P(J>2) = 4^0/0!*e^4 + 4^1/1!*e^4

          =1/e^4 + 4/e^4  =  5e^-4  which is roughly  0.0916

NC
Answered by Nathan C. Maths tutor

4147 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

the graph y = 3/((1-4x)*(1/2)) has a shaded region between x = 0 and x = 2, find area of the region


y = 4sin(x)cos(3x) . Evaluate dy/dx at the point x = pi.


Find the equation of the tangent to the curve y = 2 ln(2e - x) at the point on the curve where x = e.


find the integral of 1+3 root x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning