The random variable J has a Poisson distribution with mean 4. Find P(J>2)

P(J>2) = P(J=0)+P(J=1)     [split it up]

P(X=t)= (V^t)/t!*e^V       where V=4 in this case  [use the formula]

P(J>2) = 4^0/0!*e^4 + 4^1/1!*e^4

          =1/e^4 + 4/e^4  =  5e^-4  which is roughly  0.0916

NC
Answered by Nathan C. Maths tutor

3952 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of y = 3x^4 - 10x^2+7x


Show that arctan(x)+e^x+x^3=0 has a unique solution.


Given y = 3x^(1/2) - 6x + 4, x > 0. 1) Find the integral of y with respect to x, simplifying each term. 2) Differentiate the equation for y with respect to x.


Functions: If f(x)=3x^2 - 4 and g(x) = x + 3, 1) Evaluate f(3), 2) Find the inverse of f(x) (f^-1(x)), 3)Find fg(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences