The random variable J has a Poisson distribution with mean 4. Find P(J>2)

P(J>2) = P(J=0)+P(J=1)     [split it up]

P(X=t)= (V^t)/t!*e^V       where V=4 in this case  [use the formula]

P(J>2) = 4^0/0!*e^4 + 4^1/1!*e^4

          =1/e^4 + 4/e^4  =  5e^-4  which is roughly  0.0916

NC
Answered by Nathan C. Maths tutor

4295 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Two lines have equations r = (1,4,1)+s(-1,2,2) and r = (2,8,2)+t(1,3,5). Show that these lines are skew.


What is the best way to revise for a Maths A-level?


The curve C has the equation y = 2e^x -6lnx and passes through the point P with x - coordinate 1. a) Find the equation to the tangent to C at P


Calculate the derivative of x^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning