How do you 'complete the square' of a quadratic equation?

To complete the square, we need to rearrange the quadratic equation in the form of ax2 + bx + c into the form r(x + p)2 + q, where our task is to find the values of the unkowns of r, p and q.  Let's take the example of  completing the square of x+ 3x + 5.  The coeffecient of x2 is equal to r, so we can determine early on that the value of r is equal to 1.  The value of p is found by ensuring the coefficient of x is equal to 3.  Since the bracket is being squared, we know that the expanded form of the square bracket will give us x2 + 2px + p2.  Since 3x and 2px are equal, we can determine that 2p = 3 and therefore p = 3/2.  The last step is to find q.  To find q, we need to subtract the constant formed from the (x + p)2 expansion and then add on the constant c that we should have.  Therefore, the value of q is equal to -p2 + c.   q = -(3/2)2 + 5 = -9/4 + 5 = -9/4 + 20/4 = 11/4.

Therefore, the completed the square form of the quadratic equation x2 + 3x + 5 is (x + 3/2)2 + 11/4.

RB
Answered by Ryan B. Maths tutor

3160 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify (x^5 * x^8)/(x^4 * x^4).


Expand and simplify: (2x – 3y)(5x + 2y)


The value of a car depreciates by 35% each year. At the end of 2007 it was £5460. Work out the value of the car at the end of 2006.


Describe and explain three adaptations of succulent plants that allow them to live in hot and dry conditions.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning