Given that y = 16x + x^(-1), find the two values of x for which dy/dx = 0

The first thing required is to find out what dy/dx is in terms of x. For this, we need to differentiate y with respect to x which be can so to each term of the polynomial. All you need to do is mutiply the term (e.g. ax^b) by the the exponential, and lower the exponential by 1 (e.g. abx^(b-1). Hence:

dy/dx = 16 - x^(-2)=0

=> need x^(-2)=16

=> 1=16x^2

=> x=1/4 or x=-1/4

JM
Answered by James M. Maths tutor

7334 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write (3 + 2√5)/(7 + 3√5) in the form a + b√5


A straight line passes through the point (2,1) and has a gradient of 3. Find the co-ordinates where the line crosses the x and y axes


How do you integrate x* (exp(x))??


When Integrating by parts, how do you know which part to make "u" and "dv/dx"?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning