Given that y = 16x + x^(-1), find the two values of x for which dy/dx = 0

The first thing required is to find out what dy/dx is in terms of x. For this, we need to differentiate y with respect to x which be can so to each term of the polynomial. All you need to do is mutiply the term (e.g. ax^b) by the the exponential, and lower the exponential by 1 (e.g. abx^(b-1). Hence:

dy/dx = 16 - x^(-2)=0

=> need x^(-2)=16

=> 1=16x^2

=> x=1/4 or x=-1/4

JM
Answered by James M. Maths tutor

6988 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line with the equation y = mx + c. Find the value of m.


The volume of a cone is V = 1/3*pi*r^2*h. Make r the subject of the formula.


Prove that (root)2 is irrational


A circle is given by the equation x^2+y^2-20x-24y+195=0. Draw this circle.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences