What is differentiation and how is it done?

Differentation is a type of calculus that allows us to work out the rate of change. For example, if we have a straight line graph such as y=2x, we know that the gradient of the line is 2. If we take a curve such as y=x2+2x+9, the gradient is different at different points on the curve and so we use differentation to work this out. 

To carry out differentation you must use the following rule:

Bring the power down to the front and reduce the power by 1.

So how does this rule work in practice?

If we have an equation f(x), after we differentiate it we call it a derivative and use the notation f'(x).

So if f(x)=xa, then f'(x)=axa-1. So we have brought the power a down to the front of x and then reduced a by 1. 

Now let's take a numerical example:

f(x)=xso then f'(x)=2x

If we have an equation like f(x)=x3+2x2+9x+4 we differentiate each term separately.

The derivative of x3 is 3x2

The derivative of 2x2 is 4x

The derivative of 9x is just 9 as the power reduces to 0

The derivative of 4 is 0. Any number that is not associated with a variable (such as x) will differentiate to 0. 

So f'(x)=3x2+4x+9.

If we wanted to find the gradient of f(x)=x3+2x2+9x+4 at x=2, we differentiate the equation (as done above) and then substitute the appropirate value of x. 

 We have f'(x)=3x2+4x+9, and then substitute x=2.

So the gradient of the curve at x=2 is 3(22)+4(2)+9=29.

MP
Answered by Megan P. Maths tutor

11162 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the cubic function f(x) = x^3 - 7x - 6 has a root x = -1 and hence factorise it fully.


The equation of a line is y=e(^2x)-9 and the line has points at (0,a) and (b,0). Find the values of a and b.


1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.


How do you differentiate y=sin(cos(x))?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning