Prove that 12 cos(30°) - 2 tan(60°) can be written as √k where k is an integer, state the value of k.

Conversion of trigonometric functions:

cos(30°) = √3 / 2

tan(60°) = √3

Computing equation with trigonometric substitutions:

12 cos(30°) - 2 tan(60°) = 12 (√3 / 2) - 2 (√3) = (12 / 2) x √3 - 2√3 = 6√3 - 2√3 = 4√3

Rearranging into requested form:

4√3 = √42 x √3 = √16 x √3 = √48

Stating k:

√k = √48

k = 48

ND
Answered by Nic D. Maths tutor

7719 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you calculate a number to the power of a fraction? (8^2/3)


y=x^2+5x+6 solve for x


Express f(x) = x^2 + 5x + 9 in the form (x + a)^2 + b, stating the values of a and b.


Solve these simultaneous equations and find the values of x and y. Equation 1: 2x + y = 7 Equation 2: 3x - y = 8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning