Prove that 12 cos(30°) - 2 tan(60°) can be written as √k where k is an integer, state the value of k.

Conversion of trigonometric functions:

cos(30°) = √3 / 2

tan(60°) = √3

Computing equation with trigonometric substitutions:

12 cos(30°) - 2 tan(60°) = 12 (√3 / 2) - 2 (√3) = (12 / 2) x √3 - 2√3 = 6√3 - 2√3 = 4√3

Rearranging into requested form:

4√3 = √42 x √3 = √16 x √3 = √48

Stating k:

√k = √48

k = 48

ND
Answered by Nic D. Maths tutor

8041 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

make y the subject of this expression p = ((x+y)/5)^1/2


60 students were taking a Maths, Physics or Chemistry exam. 38 of the students were male. 11 of the 32 students who were taking the Maths exam were female. 8 males were taking the Physics exam. 12 students were taking the Chemistry exam. One of the fe


What is the best way to revise for my Maths GCSE?


Express 112 as a product of it's prime factors.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning