How do you factorise the following quadratic: x^2 - 5*x - 14?

An example of an application of factorising quadratics is to find the unknown in the equation, x. Factorising means writing the above equation in the form (x+a)(x+b)=0 Using FOIL (First, Outer, Inner, Last) to expand the brackets we get the equation: x^2+(a+b)x+ab=0 which we can see is in the same format as the expression given. Factorising is just the reverse of expanding the brackets. So we need to find the variables a and b. As we can see from our expanded standard equation the coefficient of the second term is a+b and the coefficient of the last term is a*b. So we need to find two numbers that add together to make 5 and multiply to make negative 14. Lets start with the factors of -14 which are: -1 and 14 -2 and 7 1 and -14 2 and -7 2 and -7 added together make -5 so these are a and b. So we write them into the equation: (x+2)(x-7)=0. And this is our answer. 

EP
Answered by Emma P. Maths tutor

3810 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Jill and four friends go camping together for 5 days. The friends share the cost of the trip equally. These costs are: £120 for fuel, £58 for food, £100 for equipment and £207 for activities. How much does Jill have to pay for her share of the costs?


Katie wants to buy 4 adult show tickets for £10 each and 2 child show tickets for £3 each. There is a 10% booking fee and 3% is then added for paying by credit card. Work out the total charge for Katie if she pays with a credit card.


Make a the subject of the following equation, p=(3a+5)/(4-a)


Solve the equation (3x + 2)/(x-1) + 3 = 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning