Express the following as a partial fraction: (4x^2+12x+9) / (x^2+3x+2) .

We first notice that the degree of the numerator is the same as the degree of the denominator so we have an improper fraction which we need to separate into an integer and a proper fraction before we can express it in partial fractions.

We should try to see if there's a nice way to simplify the fraction before trying long division.

We have: (4x2+12x+9) / (x2+3x+2). We want to rearrange the numerator in such a way that it will cancel with the denominator to form an integer. We notice that if we factorise 4x2+12x into 4(x2+3x) it starts to look like the denominator. We just need +8 in the end instead of +9. So we rewrite 9 as 8+1 and we factorise to get:
4(x2+3x+2)+1 / (x2+3x+2) = 4 + 1/(x2+3x+2) = 4 + 1/(x+1)(x+2).

For now consider 1/(x+1)(x+2) = A/(x+1) +B/(x+2).

We need A(x+2)+B(x+1)=1. Equating coefficients: A+B=0 so A=-B and 2A+B=1 so 2A=1-B=1+A so A=1 and B=-1.
Thus, (4x2+12x+9) / (x2+3x+2) = 4 + 1/(x+1) -1/(x+2).

In the end if you have time, try to go backwards to double check if you find the initial improper fraction.

AP
Answered by Antonia P. Maths tutor

4596 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate sin7xcos3x


A particle of mass 5kg is held at rests on a slope inclined at 30 degrees to the horizontal. The coefficient of friction for the slope is 0.7, determine whether the particle will move when released.


A particle P is projected vertically upwards from a point 20m above the ground with velocity 18m/s, no external forces act on it other than gravity. What will its speed be right before it hits the ground? Give your answer to one decimal place.


In a geometric series, the first and fourth terms are 2048 and 256 respectively. Calculate r, the common ratio of the terms. The sum of the first n terms is 4092. Calculate the value of n.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences