MYTUTOR SUBJECT ANSWERS

293 views

How and when do you use integration by parts?

Integration by parts is a method of integration used when you are attempting to integrate a function which is the product of two functions. If the two products can be expanded there is usually an easier way to integrate them than integration by parts. For example, x2(x - 4) is easier to integrate when expanded to x3 - 4x2.

The general form of the equation for integration by parts is:

∫f(x)g’(x)dx = f(x)g(x) - ∫g(x)f’(x)dx

where f’(x) is the derivative of f(x). It is also commonly seen as:

∫u dv/dx dx = uv - ∫v du/dx dx

where u and v are both function of x.

A good guideline when deciding which function to use as u (or f(x)) is the acronym LIATE:

Logarithmic e.g. ln(x)

Inverse trigonometry e.g. sin-1(x)

Algebraic e.g. x

Trigonometry e.g. sin(x)

Exponential e.g. ex.

Step 1:

Split the integrand (function to be integrated) in to its 2 products.

E.g. ∫xln(x)dx can be split in to x and ln(x).

Step 2:

Decide which function should be u and which should be dv/dx.

E.g. x is algebraic, ln is logarithmic. Logarithmic comes before algebraic in LIATE so u = ln(x) and dv/dx = x.

Step 3:

Find du/dx and v by differentiating and integrating u and dv/dx respectively.

E.g. u = ln(x), du/dx = x-1, dv/dx = x and v = x2/2

Step 4:

Substitute the variables in to the equation for integration by parts.

E.g. ∫xln(x)dx = ln(x)x2/2 - ∫x-1x2/2 dx = ln(x)x2/2 - ∫x/2 dx.

Step 5:

Evaluate the new integral.

E.g ∫xln(x)dx = ln(x)x2/2 - x2/4 + c = x2/4 (2ln(x) - 1) + c where c is a constant of integration.

Step 5 may require you to perform integration by parts again. Also LIATE does not work in every situation. If it does not work, switch the products used for u and dv/dx and try again. 

Ashley P. A Level Physics tutor, A Level Maths tutor, A Level Further...

1 year ago

Answered by Ashley, an A Level Maths tutor with MyTutor

Still stuck? Get one-to-one help from a personally interviewed subject specialist

180 SUBJECT SPECIALISTS

£24 /hr

Nicolas H.

Degree: Economics with French (Bachelors) - Durham University

Subjects offered: Maths, History+ 2 more

Maths
History
French
-Personal Statements-

“Hi I'm Nick and I would love to share my knowledge as a Maths, History or French tutor!”

£20 /hr

James J.

Degree: Economics (Bachelors) - Bristol University

Subjects offered: Maths, Geography+ 2 more

Maths
Geography
Further Mathematics
Economics

“Hi I'm James, an economics student at Bristol. I'm looking to tutor in maths and economics at GCSE and A-Level. ”

£26 /hr

George B.

Degree: Mathematics (Masters) - Warwick University

Subjects offered: Maths, Further Mathematics + 1 more

Maths
Further Mathematics
.STEP.

“Third year undergraduate at one of the top universities for Maths. Eager to tutor and help improve your grades.”

About the author

Ashley P.

Currently unavailable: for regular students

Degree: Physics (Masters) - Southampton University

Subjects offered: Maths, Physics+ 1 more

Maths
Physics
Further Mathematics

“Hi! I'm a third year physics student with a keen interest in science and maths looking to inspire others.”

You may also like...

Other A Level Maths questions

The Chain Rule: Differentiate (x^2 + 1)^5/2 with respect to x

What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?

Does the equation: x^2+5x-6 have two real roots? If so what are they?

Differentiate f(x) = 2xlnx.

View A Level Maths tutors

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok