What is the area bound by the x-axis, the lines x=1 and x=3 and the curve y=3x^(2)-1/x ? Answer in exact form.

Integrate, y= 3x-1/x

 1{3x- 1/x dx = [x-lnx]31= (3-ln3)-(1-ln1) = 3-ln3-1+0= 2-ln3

EL
Answered by Escher L. Maths tutor

3706 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If f(x) = (3x-2) / x-5 x>6, find a.) ff(8) b.) the range of f(x) c.) f^-1(x) and state its range.


Find the x coordinate of the stationary points of the curve with equation y = 2x^3 - 0.5x^2 - 2x + 4


How do you find and solve a composite function?


Solve the equation 2log (base 3)(x) - log (base 3)(x+4) = 2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences